Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Pediatr Blood Cancer ; 71(6): e30971, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38553897

RESUMEN

Adults with sickle cell trait (SCT) have a procoagulant state with increased risk of thromboembolism, but limited data are available for children. We compared the coagulation profile of children with SCT, different sickle cell disease (SCD) genotypes, and healthy controls. Compared to controls and similarly to HbSC patients, 41 SCT children (mean age 6.85 years; 20 males; 88% Africans) had a characteristic procoagulant profile: higher levels of factor VIII, von Willebrand factor (VWF) Ag and CBA, D-dimer; lower levels of ADAMTS 13 activity, ADAMTS13 activity: VWFAg, plasminogen activator inhibitor, tissue plasminogen activator. Moreover, 13/41 had clinical complications of SCD, five requiring hospitalization.


Asunto(s)
Rasgo Drepanocítico , Trombofilia , Humanos , Rasgo Drepanocítico/complicaciones , Rasgo Drepanocítico/sangre , Masculino , Femenino , Niño , Trombofilia/etiología , Trombofilia/sangre , Preescolar , Adolescente , Lactante , Estudios de Cohortes , Factor de von Willebrand/análisis , Factor de von Willebrand/metabolismo
2.
Cytotherapy ; 26(2): 145-156, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38099895

RESUMEN

BACKGROUND AIMS: Whole tumor cell lysates (TCLs) obtained from cancer cells previously killed by treatments able to promote immunogenic cell death (ICD) can be efficiently used as a source of tumor-associated antigens for the development of highly efficient dendritic cell (DC)-based vaccines. Herein, the potential role of the interferon (IFN)-inducible protein phospholipid scramblase 1 (PLSCR1) in influencing immunogenic features of dying cancer cells and in enhancing DC-based vaccine efficiency was investigated. METHODS: PLSCR1 expression was evaluated in different mantle-cell lymphoma (MCL) cell lines following ICD induction by 9-cis-retinoic acid (RA)/IFN-α combination, and commercial kinase inhibitor was used to identify the signaling pathway involved in its upregulation. A Mino cell line ectopically expressing PLSCR1 was generated to investigate the potential involvement of this protein in modulating ICD features. Whole TCLs obtained from Mino overexpressing PLSCR1 were used for DC loading, and loaded DCs were employed for generation of tumor antigen-specific cytotoxic T lymphocytes. RESULTS: The ICD inducer RA/IFN-α combination promoted PLSCR1 expression through STAT1 activation. PLSCR1 upregulation favored pro-apoptotic effects of RA/IFN-α treatment and enhanced the exposure of calreticulin on cell surface. Moreover, DCs loaded with TCLs obtained from Mino ectopically expressing PLSCR1 elicited in vitro greater T-cell-mediated antitumor responses compared with DCs loaded with TCLs derived from Mino infected with empty vector or the parental cell line. Conversely, PLSCR1 knock-down inhibited the stimulating activity of DCs loaded with RA/IFN-α-treated TCLs to elicit cyclin D1 peptide-specific cytotoxic T lymphocytes. CONCLUSIONS: Our results indicate that PLSCR1 improved ICD-associated calreticulin exposure induced by RA/IFN-α and was clearly involved in DC-based vaccine efficiency as well, suggesting a potential contribution in the control of pathways associated to DC activation, possibly including those involved in antigen uptake and concomitant antitumor immune response activation.


Asunto(s)
Antineoplásicos , Vacunas , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Calreticulina/metabolismo , Muerte Celular Inmunogénica , Antineoplásicos/metabolismo , Antígenos de Neoplasias , Inmunidad , Células Dendríticas , Vacunas/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38069253

RESUMEN

Gastric cancer (GC) is a highly malignant disease affecting humans worldwide and has a poor prognosis. Most GC cases are detected at advanced stages due to the cancer lacking early detectable symptoms. Therefore, there is great interest in improving early diagnosis by implementing targeted prevention strategies. Markers are necessary for early detection and to guide clinicians to the best personalized treatment. The current semi-invasive endoscopic methods to detect GC are invasive, costly, and time-consuming. Recent advances in proteomics technologies have enabled the screening of many samples and the detection of novel biomarkers and disease-related signature signaling networks. These biomarkers include circulating proteins from different fluids (e.g., plasma, serum, urine, and saliva) and extracellular vesicles. We review relevant published studies on circulating protein biomarkers in GC and detail their application as potential biomarkers for GC diagnosis. Identifying highly sensitive and highly specific diagnostic markers for GC may improve patient survival rates and contribute to advancing precision/personalized medicine.


Asunto(s)
Vesículas Extracelulares , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Biomarcadores de Tumor/metabolismo , Proteómica/métodos , Vesículas Extracelulares/metabolismo
4.
Metabolites ; 13(10)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37887360

RESUMEN

Metastatic soft-tissue sarcomas (mSTS) encompass a highly heterogeneous group of rare tumours characterized by different clinical behaviours and outcomes. Currently, prognostic factors for mSTS are very limited, posing significant challenges in predicting patient survival. Within a cohort of 39 mSTS patients undergoing trabectedin treatment, it was remarkable to find one patient who underwent 73 cycles of trabectedin achieving an unforeseen clinical outcome. To identify contributing factors to her exceptional long-term survival, we have explored circulation metabolomics and biohumoral biomarkers to uncover a potential distinct host biochemical phenotype. The long-term survival patient compared with the other mSTS patients exhibited a distinctive metabolic profile characterized by remarkably higher levels of ursodeoxycholic acid (UDCA) derivatives and vitamin D and lower levels of lithocholic acid (LCA) derivatives, as well as reduced levels of inflammatory C-Reactive Protein 4 (C-RP4) biomarker. Despite its exploratory nature, this study reveals a potential association between specific bile acid metabolic profiles and mSTS patients' prognosis. Enhanced clinical understanding of the interplay between bile acid metabolism and disease progression could pave the way for new targeted therapeutic interventions which may improve the overall survival of mSTS patients.

5.
iScience ; 26(10): 107678, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37752948

RESUMEN

Soft tissue sarcomas (STSs) are rare malignant tumors that are difficult to prognosticate using currently available instruments. Omics sciences could provide more accurate and individualized survival predictions for patients with metastatic STS. In this pilot, hypothesis-generating study, we integrated clinicopathological variables with proton nuclear magnetic resonance (1H NMR) plasma metabolomic and lipoproteomic profiles, capturing both tumor and host characteristics, to identify novel prognostic biomarkers of 2-year survival. Forty-five metastatic STS (mSTS) patients with prevalent leiomyosarcoma and liposarcoma histotypes receiving trabectedin treatment were enrolled. A score combining acetate, triglycerides low-density lipoprotein (LDL)-2, and red blood cell count was developed, and it predicts 2-year survival with optimal results in the present cohort (84.4% sensitivity, 84.6% specificity). This score is statistically significant and independent of other prognostic factors such as age, sex, tumor grading, tumor histotype, frailty status, and therapy administered. A nomogram based on these 3 biomarkers has been developed to inform the clinical use of the present findings.

6.
Front Pharmacol ; 14: 1212634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37637412

RESUMEN

Objective: Trabectedin is an anti-cancer drug commonly used for the treatment of patients with metastatic soft tissue sarcoma (mSTS). Despite its recognized efficacy, significant variability in pharmacological response has been observed among mSTS patients. To address this issue, this pharmacometabolomics study aimed to identify pre-dose plasma metabolomics signatures that can explain individual variations in trabectedin pharmacokinetics and overall clinical response to treatment. Methods: In this study, 40 mSTS patients treated with trabectedin administered by 24 h-intravenous infusion at a dose of 1.5 mg/m2 were enrolled. The patients' baseline plasma metabolomics profiles, which included derivatives of amino acids and bile acids, were analyzed using multiple reaction monitoring LC-MS/MS together with their pharmacokinetics profile of trabectedin. Multivariate Partial least squares regression and univariate statistical analyses were utilized to identify correlations between baseline metabolite concentrations and trabectedin pharmacokinetics, while Partial Least Squares-Discriminant Analysis was employed to evaluate associations with clinical response. Results: The multiple regression model, derived from the correlation between the AUC of trabectedin and pre-dose metabolomics, exhibited the best performance by incorporating cystathionine, hemoglobin, taurocholic acid, citrulline, and the phenylalanine/tyrosine ratio. This model demonstrated a bias of 4.6% and a precision of 17.4% in predicting drug AUC, effectively accounting for up to 70% of the inter-individual pharmacokinetic variability. Through the use of Partial least squares-Discriminant Analysis, cystathionine and hemoglobin were identified as specific metabolic signatures that effectively distinguish patients with stable disease from those with progressive disease. Conclusions: The findings from this study provide compelling evidence to support the utilization of pre-dose metabolomics in uncovering the underlying causes of pharmacokinetic variability of trabectedin, as well as facilitating the identification of patients who are most likely to benefit from this treatment.

7.
Cell Death Discov ; 9(1): 202, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386023

RESUMEN

Macroautophagy, hereafter referred to as autophagy, represents a highly conserved catabolic process that maintains cellular homeostasis. At present, the role of autophagy in cutaneous melanoma (CM) is still controversial, since it appears to be tumor-suppressive at early stages of malignant transformation and cancer-promoting during disease progression. Interestingly, autophagy has been found to be often increased in CM harboring BRAF mutation and to impair the response to targeted therapy. In addition to autophagy, numerous studies have recently conducted in cancer to elucidate the molecular mechanisms of mitophagy, a selective form of mitochondria autophagy, and secretory autophagy, a process that facilitates unconventional cellular secretion. Although several aspects of mitophagy and secretory autophagy have been investigated in depth, their involvement in BRAF-mutant CM biology has only recently emerged. In this review, we aim to overview autophagy dysregulation in BRAF-mutant CM, along with the therapeutic advantages that may arise from combining autophagy inhibitors with targeted therapy. In addition, the recent advances on mitophagy and secretory autophagy involvement in BRAF-mutant CM will be also discussed. Finally, since a number of autophagy-related non-coding RNAs (ncRNAs) have been identified so far, we will briefly discussed recent advances linking ncRNAs to autophagy regulation in BRAF-mutant CM.

8.
Biomedicines ; 11(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37371767

RESUMEN

A number of studies are underway to gain a better understanding of the role of immunity in the pathogenesis of hepatocellular carcinoma and to identify subgroups of individuals who may benefit the most from systemic therapy according to the etiology of their tumor. Human leukocyte antigens play a key role in antigen presentation to T cells. This is fundamental to the host's defense against pathogens and tumor cells. In addition, HLA-specific interactions with innate lymphoid cell receptors, such those present on natural killer cells and innate lymphoid cell type 2, have been shown to be important activators of immune function in the context of several liver diseases. More recent studies have highlighted the key role of members of the non-classical HLA-Ib and the transcript adjacent to the HLA-F locus, FAT10, in hepatocarcinoma. The present review analyzes the major contribution of these molecules to hepatic viral infection and hepatocellular prognosis. Particular attention has been paid to the association of natural killer and Vδ2 T-cell activation, mediated by specific HLA class Ib molecules, with risk assessment and novel treatment strategies to improve immunotherapy in HCC.

9.
Viruses ; 15(6)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37376576

RESUMEN

Cellular and humoral immunity are both required for SARS-CoV-2 infection recovery and vaccine efficacy. The factors affecting mRNA vaccination-induced immune responses, in healthy and fragile subjects, are still under investigation. Thus, we monitored the vaccine-induced cellular and humoral immunity in healthy subjects and cancer patients after vaccination to define whether a different antibody titer reflected similar rates of cellular immune responses and if cancer has an impact on vaccination efficacy. We found that higher titers of antibodies were associated with a higher probability of positive cellular immunity and that this greater immune response was correlated with an increased number of vaccination side effects. Moreover, active T-cell immunity after vaccination was associated with reduced antibody decay. The vaccine-induced cellular immunity appeared more likely in healthy subjects rather than in cancer patients. Lastly, after boosting, we observed a cellular immune conversion in 20% of subjects, and a strong correlation between pre- and post-boosting IFN-γ levels, while antibody levels did not display a similar association. Finally, our data suggested that integrating humoral and cellular immune responses could allow the identification of SARS-CoV-2 vaccine responders and that T-cell responses seem more stable over time compared to antibodies, especially in cancer patients.


Asunto(s)
COVID-19 , Inmunidad Humoral , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Anticuerpos , Inmunidad Celular , Anticuerpos Antivirales
10.
Cancers (Basel) ; 15(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37173937

RESUMEN

Increasing evidence pinpoints metronomic chemotherapy, a frequent and low dose drug administration with no prolonged drug-free intervals, as a potential tool to fight certain types of cancers. The primary identified targets of metronomic chemotherapy were the tumor endothelial cells involved in angiogenesis. After this, metronomic chemotherapy has been shown to efficiently target the heterogeneous population of tumor cells and, more importantly, elicit the innate and adaptive immune system reverting the "cold" to "hot" tumor immunologic phenotype. Although metronomic chemotherapy is primarily used in the context of a palliative setting, with the development of new immunotherapeutic drugs, a synergistic therapeutic role of the combined metronomic chemotherapy and immune checkpoint inhibitors has emerged at both the preclinical and clinical levels. However, some aspects, such as the dose and the most effective scheduling, still remain unknown and need further investigation. Here, we summarize what is currently known of the underlying anti-tumor effects of the metronomic chemotherapy, the importance of the optimal therapeutic dose and time-exposure, and the potential therapeutic effect of the combined administration of metronomic chemotherapy with checkpoint inhibitors in preclinical and clinical settings.

11.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834698

RESUMEN

In this study, we aimed to assess the accuracy of the proposed novel, noninvasive serum DSC test in predicting the risk of gastric cancer before the use of upper endoscopy. To validate the DSC test, we enrolled two series of individuals living in Veneto and Friuli-Venezia Giulia, Italy (n = 53 and n = 113, respectively), who were referred for an endoscopy. The classification used for the DSC test to predict gastric cancer risk combines the coefficient of the patient's age and sex and serum pepsinogen I and II, gastrin 17, and anti-Helicobacter pylori immunoglobulin G concentrations in two equations: Y1 and Y2. The coefficient of variables and the Y1 and Y2 cutoff points (>0.385 and >0.294, respectively) were extrapolated using regression analysis and an ROC curve analysis of two retrospective datasets (300 cases for the Y1 equation and 200 cases for the Y2 equation). The first dataset included individuals with autoimmune atrophic gastritis and first-degree relatives with gastric cancer; the second dataset included blood donors. Demographic data were collected; serum pepsinogen, gastrin G17, and anti-Helicobacter pylori IgG concentrations were assayed using an automatic Maglumi system. Gastroscopies were performed by gastroenterologists using an Olympus video endoscope with detailed photographic documentation during examinations. Biopsies were taken at five standardized mucosa sites and were assessed by a pathologist for diagnosis. The accuracy of the DSC test in predicting neoplastic gastric lesions was estimated to be 74.657% (65%CI; 67.333% to 81.079%). The DSC test was found to be a useful, noninvasive, and simple approach to predicting gastric cancer risk in a population with a medium risk of developing gastric cancer.


Asunto(s)
Gastritis Atrófica , Gastritis , Infecciones por Helicobacter , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Estudios Retrospectivos , Detección Precoz del Cáncer , Pepsinógeno A , Infecciones por Helicobacter/diagnóstico , Biomarcadores
13.
Int J Radiat Oncol Biol Phys ; 115(3): 608-621, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36202181

RESUMEN

PURPOSE: The present study aimed at evaluating the baseline immune profile and the immunomodulating effects of radical hemithoracic radiation therapy (RT) in patients affected by malignant pleural mesothelioma (MPM) to identify potential predictive biomarkers of therapy response, toxicity development, and eligibility for further immunotherapeutic treatments. METHODS AND MATERIALS: Blood samples were collected from 55 patients with MPM, enrolled in a phase 3 trial comparing radical hemithoracic RT (interventional arm, n = 28) with local palliative RT (control arm, n = 27). Immunomonitoring was performed before RT, at the end of treatment, and 1 month after therapy, characterizing natural killer cells, B and T lymphocytes, activated CD4 and CD8 T cells, interferon-γ- and tumor necrosis factor-α-producing T helper (Th) 1 cells, regulatory T cells, and Th17 and Th22 lymphocytes, through flow cytometry. Serum levels of interleukin (IL)-6, -8, -10 and mesothelin were quantified through Enzyme-Linked Immunosorbent Assay (ELISA) assays at the same time points. Variations in the immune parameters were investigated by Friedman test and Wilcoxon signed rank post hoc test with Bonferroni correction for multiple testing, while the prognostic effect of immune biomarkers was evaluated through Kaplan-Meier method and Spearman's correlation analysis. RESULTS: Major immune variations were noticed after radical RT compared with palliative treatment, in particular an improvement in activated T cells and in interferon-γ-producing Th1 cells after RT. In the interventional arm, baseline high levels of Th22 and IL-10 and an increase in T cells were associated with an improved survival, whereas a fold increase in serum mesothelin correlated with the development of severe toxicity. An improvement of immunosuppressive regulatory T cells was observed in both arms of treatment. CONCLUSIONS: The immunomonitoring performed in patients with MPM revealed potential prognostic biomarkers for radical hemithoracic RT treatment and identified specific immune signatures induced by RT immunomodulation, which could suggest a synergistic effect with an immunotherapeutic treatment.


Asunto(s)
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Mesotelina , Mesotelioma/radioterapia , Mesotelioma/patología , Interferón gamma , Neoplasias Pulmonares/patología
14.
Clin Epigenetics ; 14(1): 171, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503584

RESUMEN

BACKGROUND AND PURPOSE: Currently, human papillomavirus (HPV) positivity represents a strong prognostic factor for both reduced risk of relapse and improved survival in patients with oropharyngeal squamous cell carcinoma (OPSCC). However, a subset of HPV-positive OPSCC patients still experience poor outcomes. Furthermore, HPV-negative OPSCC patients, who have an even higher risk of relapse, are still lacking suitable prognostic biomarkers for clinical outcome. Here, we evaluated the prognostic value of LINE-1 methylation level in OPSCC patients and further addressed the relationship between LINE-1 methylation status and p53 protein expression as well as genome-wide/gene-specific DNA methylation. RESULTS: In this study, DNA was extracted from 163 formalin-fixed paraffin-embedded tissue samples retrospectively collected from stage III-IVB OPSCC patients managed with curative intent with up-front treatment. Quantitative methylation-specific PCR revealed that LINE-1 hypomethylation was directly associated with poor prognosis (5-year overall survival-OS: 28.1% for LINE-1 methylation < 35% vs. 69.1% for ≥ 55%; p < 0.0001). When LINE-1 methylation was dichotomized as < 55% versus ≥ 55%, interaction with HPV16 emerged: compared with hypermethylated HPV16-positive patients, subjects with hypomethylated HPV16-negative OPSCC reported an adjusted higher risk of death (HR 4.83, 95% CI 2.24-10.38) and progression (HR 4.54, 95% CI 2.18-9.48). Tumor protein p53 (TP53) gene is often mutated and overexpressed in HPV-negative OPSCC. Since p53 has been reported to repress LINE-1 promoter, we then analyzed the association between p53 protein expression and LINE-1 methylation levels. Following p53 immunohistochemistry, results indicated that among HPV16-negative patients with p53 ≥ 50%, LINE-1 methylation levels declined and remained stable at approximately 43%; any HPV16-positive patient reported p53 ≥ 50%. Finally, DNA methylation analysis demonstrated that genome-wide average methylation level at cytosine-phosphate-guanine sites was significantly lower in HPV16-negative OPSCC patients who relapsed within two years. The subsequent integrative analysis of gene expression and DNA methylation identified 20 up-regulated/hypomethylated genes in relapsed patients, and most of them contained LINE-1 elements in their promoter sequences. CONCLUSIONS: Evaluation of the methylation level of LINE-1 may help in identifying the subset of OPSCC patients with bad prognosis regardless of their HPV status. Aberrant LINE-1 hypomethylation might occur along with TP53 mutations and lead to altered gene expression in OPSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Infecciones por Papillomavirus/complicaciones , Elementos de Nucleótido Esparcido Largo , Metilación de ADN , Estudios Retrospectivos , Recurrencia Local de Neoplasia/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Pronóstico , Neoplasias de Cabeza y Cuello/genética
15.
Front Oncol ; 12: 983887, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36081561

RESUMEN

Background: Metastatic breast cancer (mBC) is a heterogeneous disease with varying responses to treatments and clinical outcomes, still requiring the identification of reliable predictive biomarkers. In this context, liquid biopsy has emerged as a powerful tool to assess in real-time the evolving landscape of cancer, which is both orchestrated by the metastatic process and immune-surveillance mechanisms. Thus, we investigated circulating tumor cells (CTCs) coupled with peripheral T-cell immunity to uncover their potential clinical relevance in mBC. Methods: A cohort of 20 mBC patients was evaluated, before and one month after starting therapy, through the following liquid biopsy approaches: CTCs enumerated by a metabolism-based assay, T-cell responses against tumor-associated antigens (TAA) characterized by interferon-γ enzyme-linked immunosorbent spot (ELISpot), and the T-cell receptor (TCR) repertoire investigated by a targeted next-generation sequencing technique. TCR repertoire features were characterized by the Morisita's overlap and the Productive Simpson Clonality indexes, and the TCR richness. Differences between groups were calculated by Fisher's, Mann-Whitney or Kruskal-Wallis test, as appropriate. Prognostic data analysis was estimated by Kaplan-Meier method. Results: Stratifying patients for their prognostic level of 6 CTCs before therapy, TAA specific T-cell responses were detected only in patients with a low CTC level. By analyzing the TCR repertoire, the highest TCR clonality was observed in the case of CTCs under the cut-off and a positive ELISpot response (p=0.03). Whereas, at follow-up, patients showing a good clinical response coupled with a low number of CTCs were characterized by the most elevated TCR clonality (p<0.05). The detection of CTCs≥6 in at least one time-point was associated with a lower TCR clonality (p=0.02). Intriguingly, by combining overall survival analysis with TCR repertoire, we highlighted a potential prognostic role of the TCR clonality measured at follow-up (p=0.03). Conclusion: These data, whether validated in a larger cohort of patients, suggest that the combined analysis of CTCs and circulating anti-tumor T-cell immunity could represent a valuable immune-oncological biomarker for the liquid biopsy field. The clinical application of this promising tool could improve the management of mBC patients, especially in the setting of immunotherapy, a rising approach for BC treatment requiring reliable predictive biomarkers.

16.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077307

RESUMEN

Classical pediatric Hodgkin Lymphoma (HL) is a rare malignancy. Therapeutic regimens for its management may be optimized by establishing treatment response early on. The aim of this study was to identify plasma protein biomarkers enabling the prediction of relapse in pediatric/adolescent HL patients treated under the pediatric EuroNet-PHL-C2 trial. We used untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics at the time of diagnosis­before any therapy­as semiquantitative method to profile plasma proteins specifically associated with relapse in 42 children with nodular sclerosing HL. In both the exploratory and the validation cohorts, six proteins (apolipoprotein E, C4b-binding protein α chain, clusterin, fibrinogen γ chain, prothrombin, and vitronectin) were more abundant in the plasma of patients whose HL relapsed (|fold change| ≥ 1.2, p < 0.05, Student's t-test). Predicting protein function with the Gene Ontology classification model, the proteins were included in four biological processes (p < 0.01). Using immunoblotting and Luminex assays, we validated two of these candidate biomarkers­C4b-binding protein α chain and clusterin­linked to innate immune response function (GO:0045087). This study identified C4b-binding protein α chain and clusterin as candidate early plasma biomarkers of HL relapse, and important for the purpose of shedding light on the molecular scenario associated with immune response in patients treated under the EuroNet-PHL-C2 trial.


Asunto(s)
Enfermedad de Hodgkin , Proteómica , Adolescente , Biomarcadores , Niño , Cromatografía Liquida , Clusterina , Proteína de Unión al Complemento C4b , Enfermedad de Hodgkin/diagnóstico , Enfermedad de Hodgkin/genética , Humanos , Recurrencia Local de Neoplasia , Proteómica/métodos , Espectrometría de Masas en Tándem
17.
Biomedicines ; 10(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36009442

RESUMEN

Immunogenic cell death (ICD) in cancer represents a functionally unique therapeutic response that can induce tumor-targeting immune responses. ICD is characterized by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which confer adjuvanticity to dying cancer cells. The spatiotemporally defined emission of DAMPs during ICD has been well described, whereas the epigenetic mechanisms that regulate ICD hallmarks have not yet been deeply elucidated. Here, we aimed to examine the involvement of miRNAs and their putative targets using well-established in vitro models of ICD. To this end, B cell lymphoma (Mino) and breast cancer (MDA-MB-231) cell lines were exposed to two different ICD inducers, the combination of retinoic acid (RA) and interferon-alpha (IFN-α) and doxorubicin, and to non ICD inducers such as gamma irradiation. Then, miRNA and mRNA profiles were studied by next generation sequencing. Co-expression analysis identified 16 miRNAs differentially modulated in cells undergoing ICD. Integrated miRNA-mRNA functional analysis revealed candidate miRNAs, mRNAs, and modulated pathways associated with Immune System Process (GO Term). Specifically, ICD induced a distinctive transcriptional signature hallmarked by regulation of antigen presentation, a crucial step for proper activation of immune system antitumor response. Interestingly, the major histocompatibility complex class I (MHC-I) pathway was upregulated whereas class II (MHC-II) was downregulated. Analysis of MHC-II associated transcripts and HLA-DR surface expression confirmed inhibition of this pathway by ICD on lymphoma cells. miR-4284 and miR-212-3p were the strongest miRNAs upregulated by ICD associated with this event and miR-212-3p overexpression was able to downregulate surface expression of HLA-DR. It is well known that MHC-II expression on tumor cells facilitates the recruitment of CD4+ T cells. However, the interaction between tumor MHC-II and inhibitory coreceptors on tumor-associated lymphocytes could provide an immunosuppressive signal that directly represses effector cytotoxic activity. In this context, MHC-II downregulation by ICD could enhance antitumor immunity. Overall, we found that the miRNA profile was significantly altered during ICD. Several miRNAs are predicted to be involved in the regulation of MHC-I and II pathways, whose implication in ICD is demonstrated herein for the first time, which could eventually modulate tumor recognition and attack by the immune system.

18.
Breast ; 65: 49-54, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35816893

RESUMEN

BACKGROUND: and purpose: Radiation recall dermatitis is an adverse event predominantly due to systemic therapy administration after a previous radiation therapy course. Few case reports describe radiation recall dermatitis in breast cancer patients treated with postoperative radiation therapy following COVID-19 vaccination. In this study we investigated the incidence and severity of radiation recall dermatitis after COVID-19 vaccination in irradiated breast cancer patients. METHODS: Patients that received at least one COVID-19 vaccination dose during the year after the end of postoperative breast radiation therapy were included in this observational monocentric study. Local symptoms occurring inside the radiation field after vaccination were patient-reported and scored according to the PRO-CTCAE questionnaire. Descriptive data of radiation recall dermatitis incidence and severity, and potential risk factors were evaluated. RESULTS: A cohort of 361 patients with 756 administered COVID-19 vaccinations was analyzed. Breast symptoms were reported by 7.5% of patients, while radiation recall dermatitis was considered for 5.5%. The incidence of radiation recall dermatitis per single dose of vaccine was 2.6%, with a higher risk for the first dose compared to the second/third (4.4% vs 1%, p = 0.003), especially when administered within the first month after the end of irradiation (12.5% vs 2.2%, p = 0.0004). Local symptoms were generally self-limited and a few cases required anti-inflammatory drugs. CONCLUSIONS: Radiation recall dermatitis is an uncommon but not rare phenomenon in breast cancer patients that received COVID-19 vaccination within one year after breast irradiation. However, symptoms severity were generally low/mild and reversible. These findings can be useful for patient counseling.


Asunto(s)
Neoplasias de la Mama , Vacunas contra la COVID-19 , COVID-19 , Radiodermatitis , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/cirugía , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , Femenino , Humanos , Radiodermatitis/epidemiología , Radiodermatitis/etiología , Vacunación/efectos adversos
19.
Cell Commun Signal ; 20(1): 78, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650588

RESUMEN

Phospholipid scramblase 1 (PLSCR1) is the most studied protein of the scramblase family. Originally, it was identified as a membrane protein involved in maintaining plasma membrane asymmetry. However, studies conducted over the past few years have shown the involvement of PLSCR1 in several other cellular pathways. Indeed, PLSCR1 is not only embedded in the plasma membrane but is also expressed in several intracellular compartments where it interacts with a diverse repertoire of effectors, mediators, and regulators contributing to distinct cellular processes. Although most PLSCR1 interactors are thought to be cell-type specific, PLSCR1 often exerts its regulatory functions through shared mechanisms, including the trafficking of different molecules within intracellular vesicles such as endosomes, liposomes, and phagosomes. Intriguingly, besides endogenous proteins, PLSCR1 was also reported to interact with exogenous viral proteins, thereby regulating viral uptake and spread. This review aims to summarize the current knowledge about the multiple roles of PLSCR1 in distinct cellular pathways. Video Abstract.


Asunto(s)
Proteínas de Transferencia de Fosfolípidos , Transporte Biológico , Membrana Celular/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo
20.
Crit Rev Oncol Hematol ; 175: 103707, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35569724

RESUMEN

Amongst the chief targets of immune-checkpoint inhibitors (ICIs), namely the Programmed cell death protein 1 (PD-1)/PD-Ligands (Ls) axis, most research has focused on PD-L1, while to date PD-L2 is still under-investigated. However, emerging data support PD-L2 relevant expression in malignancies of the head and neck area, mostly in head and neck squamous cell carcinoma (HNSCC) and salivary gland cancers (SGCs). In this context, ICIs have achieved highly heterogeneous outcomes, emphasizing an urgent need for the identification of predictive biomarkers. With the present review, we aimed at describing PD-L2 biological significance by focusing on its tissue expression, its binding to PD-1 and RGMb receptors, and its impact on physiological and anti-cancer immune response. Specifically, we reported PD-L2 expression rates and significant clinical correlates among different head and neck cancer histotypes. Finally, we described the biology of soluble PD-L2 form and its potential application as a prognostic and/or predictive circulating biomarker.


Asunto(s)
Neoplasias de Cabeza y Cuello , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1/metabolismo , Neoplasias de Cabeza y Cuello/diagnóstico , Humanos , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...